Redox Chemistry of Bromine

- Bromine in the +VII oxidation state is a very strong oxidizer
- Br(VII) compounds have been difficult to prepare, compared to CI(VII) and I(VII)

Reason: d-block contraction

For bromine:

- Electrons have been filled into the poorly shielding d-orbitals of the n-1 shell
- Build-up of a large effective nuclear charge
- Leading to a contraction of the atom and increase of the ionization energy

Interhalogen Compounds

Table 51 Halogens X_2 and Interhalides XY^{a} .

FF (1886, Moissan) <i>colorless gas</i> m.p219.62°C b.p188.14°C			a)	Dissociation ener- gies: F ₂ : 157.9; ClF: 252.5; BrF: 248.6; IF: ca. 277 Cl ₂ : 121.7; BrCl: 215.1; ICl: 207.7; Br ₂ : 193.9;
CIF (1928, Ruff) colorless gas m.p. -155.6° C b.p. -101.1° C $\Delta H_{f} - 56.5 \text{ kJ mol}^{-1}$	CICI (1774, Scheele) yellow-green gas m.p101.00°C b.p34.06°C		b) c)	IBr: 175.4; I_2 : 152.5 [kJ mol ⁻¹] Discovered indepen- dently by Gay-Lus- sac. ICl occurs also in a second, metastable
BrF (1933, Ruff) bright red gas m.p. $\approx -33^{\circ}$ C b.p. $\approx +20^{\circ}$ C(dispr.) $\Delta H_{f} - 58.6 \text{ kJ mol}^{-1}$	BrCl (1930, Lux) dark red liquid m.p. -66° C b.p. ca. $+5^{\circ}$ C(decomp.) $\Delta H_{\rm f}$ +14.6 kJ mol ⁻¹	BrBr (1826, Balard) deep brown liquid m.p7.25°C b.p. +58.78°C		modification (β -ICl) in the form of red- brown rhomboidal flakes, m.p. +13.9°C.
IF (1960, Schmeisser) white powder (-78° C) dispr. above -14° C $\Delta H_{f} - 95.4 \text{ kJ mol}^{-1}$	α-ICI ^{a)} (1814, Davy) ^{b)} <i>ruby-red</i> needles m.p. +27.38°C ^{c)} b.p. +94.4°C (decomp.) $\Delta H_{\rm f}$ -23.8 kJ mol ⁻¹	IBr (1826, Balard) black crystals m.p. $+41^{\circ}$ C b.p. $+116^{\circ}$ C (decomp.) $\Delta H_{f} - 10.5 \text{ kJ mol}^{-1}$	II gr m b.	(1812, Courtois) ayish-black flakes .p. +113.60°C p. +185.24°C

Interhalogen Compounds

CIF ₃ (1930, Ruff) colorless gas m.p. -76.3° C b.p. $+11.75^{\circ}$ C $\Delta H_{f} - 164.8 \text{ kJ mol}^{-1}$	CIF ₅ (1963, Smith) colorless gas m.p. -103° C b.p. -13.1° C $\Delta H_{\rm f} - 255 \text{ kJ mol}^{-1}$	CIF ₆ ⁺ (1972, Christ e) ^{b)} counterions e.g. BF_4^- , PtF_6^-
BrF ₃ (1905, Lebeau) <i>colorless</i> liquid m.p. +8.77°C b.p. +125.75°C $\Delta H_{\rm f}$ -301 kJ mol ⁻¹	BrF ₅ (1931, Ruff) colorless liquid m.p. -60.5° C b.p. $+41.3^{\circ}$ C $\Delta H_{f} - 458.6 \text{ kJ mol}^{-1}$	BrF ⁺ ₆ (1974, Gillespie) counterions e.g. AsF_6^- , Sb_2F_{11}
IF ₃ (1960, Schmeisser) yellow powder (-78°C) dispr. above -28°C $\Delta H_{\rm f} \approx -486 \text{ kJ mol}^{-1}$	IF ₅ (1870, Gore) <i>colorless</i> liquid m.p. +9.42°C b.p. +104.48°C $\Delta H_{\rm f}$ -843 kJ mol ⁻¹	IF ₇ (1930, Ruff) <i>colorless</i> gas m.p. +6.45°C b.p. +4.77°C $\Delta H_{\rm f}$ -962.5 kJ mol ⁻¹

• Only with iodine is the heptafluoride known. WHY?

 BrF_6^- anion: octahedral IF_6^- anion: distorted octahedral

Stereochemically inactive lone pair Stereochemically active lone pair

WHY?

Halogen Bonding

Halogen Bonding: Size of σ -Hole Increases with Lower Hybridization of XB Donor

- The size of the σ-hole on iodine increases with decreasing hybridization state of the C atom of the XB donor (sp > sp² > sp³)
- In parallel, the electronegative area decreases from C(sp³) to C(sp²) and changes to an electroneutral surface potential for C(sp)

Electrostatic potential surface at the electron density of 0.001 electrons Bohr-3

O. Dumele, D. Wu, N. Trapp, N. Goroff, F. Diederich, Org. Lett. 2014, 18, 4722-4725.

σ-hole opposite to the (electronegative) ligand

Halogen Bonding

- Iodine compounds are halogen bond donors
- The pyridyl group is a halogen bond acceptor

Halogen Bonding

- Analogously, there are chalcogen bonds, pnictogen bonds and tetrel bonds
- Mainly electrostatic interactions with little covalency

- Protic solvents, examples: H₂O, aHF, H₂SO₄, CH₃OH
- Aprotic solvents, examples: N₂O₄, BrF₃, BrF₅, SO₂
- Coordinating solvents, examples: CH₃CN, Et₂O

Solvent	m.p. (°C)	b.p. (°C)	Dielectric constant	Comments
H ₂ O	0	100	78	
Anhydrous HF	-83.6	19.5	175	Superacidic, toxic, oxidative resistant
SO_2	-72	-10	17.6	
SO ₂ ClF	-124.7	7.1		
BrF ₅	-61.30	40.25		Oxidatively resistant, can rea explosively with organic materials
BrF ₃	8.6	134	107	Significant autoionization
CFCl ₃	-110.48	23.77	2.3	Good for non-polar molecules
Anhydrous NH ₃	-77.73	-33.34	25	Basic, good for work in highly reducir environments
Supercritical CO ₂				Remarkable solvation properties, b
				special apparati are needed to allow for the
				high pressure

Solvent	m.p. (°C)	b.p. (°C)	Dielectric constant	Comments
H ₂ O	0	100	78	
Anhydrous HF	-83.6	19.5	175	Superacidic, toxic, oxidative resistant
SO_2	-72	-10	17.6	
SO ₂ ClF	-124.7	7.1		
BrF ₅	-61.30	40.25		Oxidatively resistant, can rea explosively with organic materials
BrF ₃	8.6	134	107	Significant autoionization
CFCl ₃	-110.48	23.77	2.3	Good for non-polar molecules
Anhydrous NH ₃	-77.73	-33.34	25	Basic, good for work in highly reducir environments
Supercritical CO ₂				Remarkable solvation properties, b
				special apparati are needed to allow for th
				high pressure

$$Na_{(s)} \rightarrow Na^{+}_{(am)} + e^{-}_{(am)}$$

- Low conc.: deep blue
- High conc.: golden

Solvolyzed electrons in liquid ammonia (NOT NH_{3(aq)}): highly reducing

	Solvent	m.p. (°C)	b.p. (°C)	Dielectric constant	Comments
	H ₂ O	0	100	78	
<	Anhydrous HF	-83.6	19.5	175	Superacidic, toxic, oxidative resistant
	SO_2	-72	-10	17.6	
	SO ₂ ClF	-124.7	7.1		
	BrF_5	-61.30	40.25		Oxidatively resistant, can rea explosively with organic materials
	BrF ₃	8.6	134	107	Significant autoionization
	CFCl ₃	-110.48	23.77	2.3	Good for non-polar molecules
	Anhydrous NH ₃	-77.73	-33.34	25	Basic, good for work in highly reducir environments
	Supercritical CO ₂				Remarkable solvation properties, b
					special apparati are needed to allow for the high pressure

 Anhydrous HF is a superacid (more acidic than H₂SO₄); stable for the most oxidizing species

Autoprotolysis equilibria:

$$3 \text{ HF}_{(I)} \leftrightarrows \text{H}_2\text{F}_{(\text{HF})}^+ + \text{HF}_2_{(\text{HF})}^-; \text{ pK}_{\text{HF}} = 12.50$$

 $2 \text{ HSO}_3\text{F}_{(I)} \leftrightarrows \text{H}_2\text{SO}_3\text{F}_{(\text{HSO}3\text{F})}^+ + \text{ SO}_3\text{F}_{(\text{HSO}3\text{F})}^-; \text{ pK}_{\text{HSO}3\text{F}} = 6.1$

<u>Acidification by SbF₅</u>:

 $2 \text{HF}_{(I)} + \text{SbF}_{5(I)} \leftrightarrows \text{H}_2\text{F}_{(HF)}^+ + \text{SbF}_6_{(HF)}^-$

Solvent	m.p. (°C)	b.p. (°C)	Dielectric constant	Comments
H ₂ O	0	100	78	
Anhydrous HF	-83.6	19.5	175	Superacidic, toxic, oxidative resistant
SO ₂	-72	-10	17.6	
SO ₂ ClF	-124.7	7.1		
BrF ₅	-61.30	40.25		Oxidatively resistant, can rea explosively with organic materials
BrF ₃	8.6	134	107	Significant autoionization
CFCl ₃	-110.48	23.77	2.3	Good for non-polar molecules
Anhydrous NH ₃	-77.73	-33.34	25	Basic, good for work in highly reducir environments
Supercritical CO ₂				Remarkable solvation properties, b
				special apparati are needed to allow for the high pressure

Ionic liquids

- Ionic compounds (salts) that have a low melting point, preferably below RT
- Use large cations that do not pack nicely in the solid state:
- e.g., ethylmethylimidazolium cation

Mechanochemistry

- Some reactions are not carried out in a solvent
- It is possible to grind solid reagents together (typically in a ball mill): Allows reaction to occur because the surface contact is greatly increased
- In recent years this approach has become more popular
- Environmentally friendly because of not solvent waste.

Pseudohalogen

 Table 17.7
 Pseudohalides, pseudohalogens, and corresponding acids

Pseudohalide	Pseudohalogen	E [↔] /V	Acid	рК _а
CN ⁻	NCCN	+0.27	HCN	9.2
Cyanide	Cyanogen		Hydrogen cyanide	
NCS ⁻	NCSSCN	+0.77	HNCS	-1.9
Thiocyanate	Dithiocyanogen		Hydrogen thiocyanate	
NCO ⁻			HNCO	3.5
Cyanate			Isocyanic acid	
CNO-			HCNO	3.66
Fulminate			Fulminic acid	
NNN ⁻			HNNN	4.92
Azide			Hydrazoic acid	